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Processes occurring during sleep contribute critically to the

stabilization of new learning for long-term retention. Previously

consolidated memory traces can be reactivated rendering

memories labile again, and vulnerable to disruption or

alteration. Across the phases of reactivation, modification, and

re-consolidation, processing during sleep may play an

essential role in restabilizing the transformed memory. We

discuss recent research assessing the impact of sleep on

reactivated memories potentially undergoing reconsolidation.

We further evaluate targeted memory reactivation, an

intervention that can directly engineer reconsolidation during

sleep. Although sleep may play a role in restabilizing newly-

modified memories, much remains to be explored before we

fully understand the supporting mechanisms.
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Introduction
Recent decades bring two facts about memory to the fore:

first, sleep plays an important role in consolidation; and

second, reactivating consolidated memories renders them

labile again, subject to change, and in need of reconso-

lidation if they are to be preserved, albeit transformed.

One can now pose the question: does sleep also affect

reconsolidation and, if so, how? In this review, we start by

sketching the background to the two pillars of this paper:

sleep and memory, and memory reactivation and recon-

solidation. We then review findings directly assessing the

impact of sleep on reactivated, and potentially reconso-

lidating, memories. We consider memories reactivated

during wake and during sleep.
www.sciencedirect.com 
In the early 1920’s, Jenkins and Dallenbach [1] demon-

strated that retention of nonsense syllables benefited

from a night of sleep compared to wakefulness, showing

that sleep played a special role in preserving new memo-

ries. In the decades since, repeated demonstrations show

that sleep compared to wakefulness preferentially bene-

fits certain memories [2–5]. The discovery that hippo-

campal place cells replay the same experience-specific

neuronal firing patterns during subsequent periods of

sleep suggests that sleep plays more than a passive role

in memory consolidation [6–8]. Hippocampal replay is a

candidate mechanism for stabilizing memory connections

with the neocortex via a coordinated dialogue between

slow waves (>4 Hz), sleep spindles (bursts of activation in

the 9–16 HZ range), and hippocampal ripples (�80 Hz)

[see Ref. [2] for review [9]]. More recent research reveals

causal links between memory performance and specific

electrophysiological markers, such as slow wave activity

and spindles [10–12].

At the same time, memories are dynamic. During initial

encoding, synaptic changes in hippocampal and cortical

circuits serve to represent the details of an event, its

context, and its substance. The resulting memory trace

must be quickly stabilized or else become susceptible to

forgetting [13–15]. The hippocampus appears particularly

important for continued access to specific details. Previ-

ously consolidated memories can be reactivated, return-

ing them to a labile state [16,17], one that again tilts the

balance to hippocampal engagement [18], resulting in

memory trace vulnerability and susceptibility to disrup-

tion or alteration. Furthermore, once reactivated, a mem-

ory trace must undergo a restabilization process, termed

re-consolidation [13,19,20].

Sleep and reconsolidation
Does sleep also play a crucial role for memory reconso-

lidation? In what follows, we discuss the role sleep plays

for subsequent restabilization during reconsolidation. We

propose that sleep’s role need not be limited to memories

formed solely during wake, but instead can include

processing and reconsolidation of memories reactivated

during sleep itself.

That reconsolidation starts with the reactivation of a

previously formed memory distinguishes reconsolidation

from consolidation, and reactivation itself is not a

simple matter. A number of factors influence successful

reactivation including type of reactivation cue, contextual

similarities between the initial and reactivated events,
Current Opinion in Behavioral Sciences 2020, 33:1–6
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timing between the formation and reactivation of a

memory, and strength of the old memory [20–26]. Fur-

thermore, reactivated memories are vulnerable to disrup-

tion [27,28] or modification [20,29–31]. Experiences that

follow reactivation, and the neural processes those experi-

ences initiate, could erase the reactivated memory trace,

or modify it in a way that leads either to a loss of detail, or

retention of many original details with inclusion of newly

acquired details [20,29]. Whether weakened or modified,

the memory trace must then be restabilized through the

cellular/molecular processes supporting reconsolidation

[31] (Figure 1).

The foregoing provides background to our main question:

does sleep play a role in reconsolidation that differs from its

role in consolidation? To address this question, we must first

consider an important fact about memory reconsolidation:

updating (or disruption) of a reactivated memory requires a

delay for that updating (or disruption) to be evident in

behavior [20,29]. That is, neither alteration nor disruption

of the memory is immediately observable [27,28]. Instead,

changes are only evident after a period of time, typically filled
with sleep. Two early studies suggested that the absence, or

disruption, of sleep impairs reconsolidation [32,33], but

neither established a unique role for sleep.
Figure 1
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Recent research
Klinzing et al. [34��] directly assessed sleep’s role in

reconsolidation. Participants learned the locations of

card pairs, similar to the game Concentration, in the

presence of an odor (Task A). A day later, some parti-

cipants returned to the same learning context and

received a reminder cue that consisted of initiating

but immediately stopping a ‘test’ of the initial card pairs

as if by accident. Other participants returned to a sepa-

rate building and received no reminder cue (the control

condition). Participants then slept or remained awake for

40 min. All participants then learned new, altered card

pairs—designed to assess retroactive interference. For

example, in Task A, participants learned pair A–B

whereas in interference Task B, participants learned

A–C (B and C represented different locations). After a

short delay, all participants recalled card B’s location in

response to its paired A-card. In line with previous

animal research suggesting faster restabilization after

reactivation [35,36], Klinzing et al. found rapid Task A

restabilization in the sleep-reactivation (but not the

sleep-control) group that correlated significantly with

time in slow wave sleep, a notable finding given that

a 40-min sleep episode does not result in consolidation of

Task A learning [37].
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sion from new encoding through consolidation, reactivation, and final

two lists of objects spaced 48 hours apart. If reactivated before

eactivated List 1 memory. If List 1 memory is not reactivated, List
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Moyano et al. [38�] recently found that a 90-min nap re-

stabilized a memory, protecting it against alteration from

newly learned and potentially interfering information.

Participants first learned a list of nonsense-syllable pairs

(List 1), each presented in a specific context (e.g. overlaid

on an image with music playing). The following day,

subjects returned for a reminder cue of List 1. After

reactivation, subjects slept or remained awake for

90 min, or remained awake for 10 hours. After the delay

periods, all subjects learned a second, interfering list of

nonsense syllables (List 2). Forcato et al. [39] previously

demonstrated List 1 disruption up to 10 hours after reac-

tivation, after which the syllable-pair memory showed

restabilization. On Day 3, Moyano et al., tested if wake-

fulness or sleep limited List 1 memory disruption by

having participants recall both nonsense-word lists and

measuring the degree of List-1 memory-trace disruption

using the retrieval induced forgetting (RIF) measure. In

RIF, a stable memory (List 1) causes the reduction in the

recall of a second, separate memory (List 2). In contrast, if

the original memory is disrupted or unstable, there is no

reduction in List 2 recall. In the current study, both the

90-minute nap and 10 hr wakefulness conditions showed

equivalent stable List 1 memories as evidenced by

reduced List 2 recall. Whereas, the 90-min wakefulness

group showed greater List 2 recall, suggesting a disrupted

List-1 memory. These findings, along with Klinzing et al.,
suggest that sleep contributes to rapidly restabilizing

reactivated memory traces, reducing their susceptibility

to disruption or alteration.

Brawn et al. [40��] further investigated the time course of

stabilization and restabilization of reconsolidated memo-

ries by training song birds on two separate songs. The first

song (S1) became the ‘original’ memory to be reactivated.

Song 2 (S2) provided potentially interfering information.

Across several studies, reactivation of S1 followed by

training on S2, resulted in destabilization and reduced

S1 performance across wakefulness. However, the more

destabilized S1 became (tested before sleep), the greater

the benefit of sleep on subsequent performance, re-

stabilizing S1 song. Brawn et al. then repeatedly trained,

reactivated, destabilized, and restabilized S1 and S2. Over

the cyclic reactivations and interference learning sleep re-

stabilized the S1 memory trace, improving its perfor-

mance. Although this study clearly demonstrates the role

of sleep in re-stabilizing reactivated memories, it does not

address the processes happening during sleep that

advance restabilization and limit memory distortion.

Our recent work investigated the role of sleep during both

consolidation and reconsolidation, looking for sleep mar-

kers that could link to memory updating [41��]. First, less

sleep after learning List 1 (consolidation), combined with

more sleep after learning List 2 (reconsolidation) mea-

sured with actigraphy, generated higher rates of memory

updating reflected in List-2 object attribution to List 1. In
www.sciencedirect.com 
a second, complementary experiment using polysomno-

graphy, participants with lower rates of sleep spindles

after consolidation and higher rates of sleep spindles after

reconsolidation also showed greater rates of memory

updating. In contrast to other studies, we did not find a

correlation between spindles during consolidation and

subsequent updating, which may suggest differing roles

of sleep during the restabilization of the reconsolidated

trace. Bryant et al.’s findings suggest that sleep helps

restabilize a reactivated trace, potentially protecting it

from interference. Furthermore, spindles might reflect

processes unique to memory reconsolidation.

So far, our discussion focuses on the impact of sleep on

memories reactivated during wakefulness. A handful of

recent studies investigate the impact of reactivating

memories during sleep, using techniques collectively

referred to as ‘targeted memory reactivation (TMR; see

Ref. [42] for review). Born and Rasch [43] proposed that

during sleep, memories could be reactivated and made

labile, paralleling waking reconsolidation and supporting

the integration of new information into pre-existing

knowledge networks and the subsequent stabilization

of this modified memory trace. However, in contrast to

the situation during wakefulness, during sleep there is

limited ongoing interference. This might remove the

possibility of disruption or alteration leading to a default

restabilization of sleep-reactivated memories, resulting in

stronger and more integrated traces.

TMR provides an opportunity to engineer sleep; specifi-

cally cueing certain memory details for alteration [42]. In

these paradigms, participants learn information paired

with a sound or odor during wake (e.g. participants

encoded the location of a train on a grid while hearing

a train whistle). During sleep, the associated sound or

odor is cued, potentially triggering the reactivation of a

specific memory detail. Participants subsequently

remember cued details at greater rates than non-cued

details, suggesting that memories are indeed activated

and modified (here strengthened) during sleep. Thus, one

could test whether reconsolidation can be engineered

during sleep by reactivating a memory with a cue (sound

or odor), which should momentarily return it to a labile

state, before providing new learning, and later assessing

the extent of memory updating.

Siebold et al. [44] attempted to directly engineer recon-

solidation in this way during sleep. They trained partici-

pants on two lists of 2D-object-location pairings across

two days. Participants learned the first list in the presence

of an odor on Day 1. During a nap after learning List 2 on

Day 2, the List 1 odor was re-presented, presumably

cueing the first memory during a period of sleep when

List 2 memory might be spontaneously reactivated and

consolidated. In particular, the presentation of the List

1 odor cue during the nap on Day 2, after List 2 learning,
Current Opinion in Behavioral Sciences 2020, 33:1–6
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might activate the List 1 memory, inducing interference

with List 2 consolidation, resulting in a weakening of one

or both of the memory traces. Prior literature typically

shows alteration or modification of the List 1 memory

after reactivating it during wakefulness and before List

2 learning [20,29–31]. However, the authors found

improved memory performance for both lists. Given that

strengthening of a memory can result from both

consolidation and reconsolidation, it is possible both lists

were reactivated or perhaps List 2 was strengthened

through typical consolidation processes whereas

reactivation strengthened List 1 independently (see also

Ref. [44–46]).

In contrast to Siebold et al.’s [44] failure to observe strong

evidence of TMR-engineered memory alteration during

sleep, we recently demonstrated simultaneous reactiva-

tion of two different memories during sleep, and subse-

quent memory-performance disruption from combining

cues during TMR [47��]. Although we did not test

reconsolidation in the standard sense, what we accom-

plished shows that it is possible to reactivate and alter

memories during sleep. During wakefulness, we trained

participants on a forget-cue (a tone) using a modified

directed forgetting paradigm. Every time participants

heard the cue they were to forget the word they had just

read. In the absence of the cue they were to remember the

word. We then trained participants on visually presented

object-location pairings while hearing an appropriate

sound with each object, for example, participants saw a

train and heard a train whistle. That night, during sleep

we reactivated some of the objects with their sounds and a

few seconds later presented the previously established

forget cue — the tone from the modified directed-

forgetting paradigm. One week later, we tested

participants’ memory for all the objects. Participants

forgot more TMR-cued objects (objects paired with

the forget cue) than uncued objects suggesting that

during sleep one can reactivate a consolidating memory

(the one being formed about objects and their locations)

and alter it by presenting additional, destabilizing infor-

mation (the forget cue).

Two recent TMR studies have reactivated multiple,

overlapping and competing memory details. In the first,

participants learned locations for identical pictures

(X1–X2), for example participants saw a dog image in

2 locations [48]. After a short (5 min) or long delay

(3 hours), participants learned a new picture location

for one of the objects creating a new paired object-

location association (X1–X3) while also hearing a sound

representative of that object. For example, one of the dog

images was moved and the sound ‘woof’ was heard.

Subjects then underwent TMR during a nap with some

of the pairs cued. This theoretically reactivated over-

lapping pair representations, X1–X2 and X1–X3, which

would have differing inter-object associations given the
Current Opinion in Behavioral Sciences 2020, 33:1–6 
delay between learning. For example, there would be a

strong association between pairs in the short delay condi-

tion and weaker associations across the longer delay. After

sleep, in the short-delay condition cued pairs showed

improved X2 location accuracy compared to non-cued

objects, but disrupted recall was observed in the long-

delay condition. This suggests that the proximity

between learning of overlapping associated information

and reactivating the interfering detail (X1–X3) has critical

consequences for subsequent gains or losses. A second

study that involved learning associations between sounds,

objects, and distinct spatial locations [49��], where the

spacing between pairs of objects and individual object

reward value was manipulated, showed that TMR pro-

vided benefit only during spaced learning. In contrast,

TMR induced interference for the best-learned consecu-

tively presented pairs, presumably when cued competi-

tion between memory details was greatest. Although

these studies engineered TMR to induce competition

during sleep, rather than reconsolidation, both instantiate

the reactivation of a single memory cue with overlapping,

interfering information, resulting in disruption in most

but not all cases (the exception being Siebold et al. [44]).

Altogether, it continues to remain an open question as to

whether the mechanisms supporting reconsolidation are

the same during wakefulness and sleep. Klinzing et al.
[50��], using the methods described above [36], recently

provided evidence suggesting these mechanisms may

differ. During sleep, they pharmacologically induced a

heightened state of acetylcholine—which is typically

high during waking encoding and low during consolida-

tion in NREM — while simultaneously administering

odor-based TMR. Their results demonstrated that cued

memory performance benefitted from odor-based TMR,

no matter the acetylcholine level during sleep. This

contrasts with Gais and Born [51], who reported the

elimination of the sleep-dependent memory benefit with

heightened acetylcholine. If TMR is effective irrespec-

tive of level, as the authors show, this suggests other

mechanisms are at play.

Conclusion
Current evidence provides support for the role of sleep in

enhancing reconsolidation of memories formed during

wake. In particular, reactivation results in faster [36] and

more durable [40��] restabilization during sleep, and sleep

contributes more to restabilization for memories that

showed greater disruption in wakefulness [42]. However

evidence that sleep contributes differentially to consoli-

dation and reconsolidation is currently limited to the

finding that sleep spindle activity contributed differen-

tially to consolidation and reconsolidation [43]. Whether

memories can be reconsolidated via re-engineering dur-

ing sleep is also unclear, warranting more research. The

absence of interfering activities in the sleep state could

alone lead to unexpected outcomes for memories
www.sciencedirect.com
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activated and potentially manipulated during sleep.

Sleep-based reconsolidation, triggered by TMR or other

methods, could provide significant translational opportu-

nities [47��,48,49��]. Furthermore, should sleep be instru-

mental in restabilizing newly modified memories

[36,40��,42], those triggered during sleep may be further

impenetrable to future modification. At this time, more

research is needed into the basic mechanisms behind the

re-stabilization of memories that are cued during sleep

and the consequences of these processes for reconsoli-

dated memories.
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