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An Embodied Neurocomputational Framework for
Organically Integrating Biopsychosocial Processes:
An Application to the Role of Social Support in
Health and Disease
Ryan Smith, PhD, Karen L. Weihs, MD, Anna Alkozei, PhD, William D.S. Killgore, PhD,
and Richard D. Lane, MD, PhD

ABSTRACT

Objective: Two distinct perspectives—typically referred to as the biopsychosocial and biomedical models—currently guide clinical prac-
tice. Although the role of psychosocial factors in contributing to physical and mental health outcomes is widely recognized, the biomedical
model remains dominant. This is due in part to (a) the largely nonmechanistic focus of biopsychosocial research and (b) the lack of spec-
ificity it currently offers in guiding clinicians to focus on social, psychological, and/or biological factors in individual cases. In this article,
our objective is to provide an evidence-based and theoretically sophisticated mechanistic model capable of organically integrating
biopsychosocial processes.
Methods: To construct this model, we provide a narrative review of recent advances in embodied cognition and predictive processing
within computational neuroscience, which offer mechanisms for understanding individual differences in social perceptions, visceral re-
sponses, health-related behaviors, and their interactions. We also review current evidence for bidirectional influences between social sup-
port and health as a detailed illustration of the novel conceptual resources offered by our model.
Results:When integrated, these advances highlight multiple mechanistic causal pathways between psychosocial and biological variables.
Conclusions: By highlighting these pathways, the resulting model has important implications motivating a more psychologically sophis-
ticated, person-specific approach to future research and clinical application in the biopsychosocial domain. It also highlights the potential
for quantitative computational modeling and the design of novel interventions. Finally, it should aid in guiding future research in a manner
capable of addressing the current criticisms/limitations of the biopsychosocial model and may therefore represent an important step in
bridging the gap between it and the biomedical perspective.
Key words: active inference, biopsychosocial model, biomedical model, computational neuroscience, embodied cognition, predictive coding.

INTRODUCTION

Forty years ago, the biopsychosocial model was proposed by
Engel (1) as an attempt to improve upon limitations within the

prevailing biomedical model for understanding and treating physical
and mental illness. In particular, Engel's model served to draw the at-
tention of clinicians to the important role of psychological, social, and
other environmental variables in facilitating, sustaining, and/or
modifying the course of illness (i.e., via interaction with the mo-
lecular, cellular, and systemic variables of the traditional biomed-
ical model). Although there is now a large body of research
supporting aspects of the biopsychosocial model, the fact remains
that within most medical domains (with the exception of psychia-
try and some primary care settings), the dominant model remains
biomedical, and clinical observation of psychological and social/
environmental variables has progressively declined (2). These trends
are exacerbated by the current medical-economic climate in many
industrialized countries, where a premium is placed on profitability
of health care and minimization of encounter time with patients.

However, another important factor is the mindset of those who ad-
here strongly to the biomedical model. Clearly, the biomedical
model is simpler in the sense that it assumes fewer explanatory el-
ements than the biopsychosocial model (i.e., the biopsychosocial
model assumes all of the same mechanistic biological pathways
assumed within the biomedical model, but it incorporates psycho-
social factors in addition).1 The biomedical model is, therefore,
preferable, all else being equal. Importantly, this view is often ac-
companied by the belief that the role of psychological and social
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1Although there is another sense inwhich higher-level (interventionist) psy-
chosocial explanations are simpler, in that less mechanistic detail is necessary
to provide a causal explanation (e.g., “increasing social support reduces stress
levels, and reduced levels of stress promote healthier immune functioning”).
This type of simplicity can be better in the sense that it can have greater
pragmatic utility in certain contexts.

PP = predictive processing, SES = socioeconomic status,
SNS = sympathetic nervous system
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factors has not been proven, coupled with the acknowledged chal-
lenge of explaining how such factors actually come to influence
medical outcomes in a concrete mechanistic sense. This is partic-
ularly challenging for social variables that exist outside the indi-
vidual. In a recent editorial, one of us proposed that a possible
solution to the nonacceptance of the biopsychosocial model within
biomedicine would be to express the biopsychosocial model in
mechanistic biomedical terms (3). The goal of this article is to pro-
vide such a model based on the integrative nature of brain function
and new computational approaches that make it possible to specify
mechanistic links between neurobiology, peripheral physiology,
psychology, behavior, and social variables.

Many examples can be provided that demonstrate the impact of
social, psychological, and behavioral factors on medical outcome.
Behavioral factors (such as smoking and obesity) are the single
leading cause of premature death (i.e., greater than othermajor factors,
such as genetics, healthcare, etc. (4)). Low socioeconomic status
(SES) also has a major adverse impact on health, as does physical,
sexual, and emotional abuse in childhood (5,6). A great deal of evi-
dence also suggests that vulnerability to illness can be modulated by
stressful life events and other chronic social/environmental challenges
(7) and that positive emotions have beneficial effects on health (8).

Many other examples could be cited (e.g., regarding doctor-
patient relationships, health behaviors, adherence to treatment,
etc.). The key point, however, is that many of these findings are
correlational and have taken an approach in which biological, psy-
chological, and social variables are assessed independently of one
another and then related to medical outcome statistically. Further-
more, although some studies have provided evidence for causal re-
lationships between psychosocial variables and health outcomes
(e.g., using randomized controlled trials and natural experiments
(9–14)), such findings have not yielded many insights regarding
the underlying mechanisms that account for those relationships
(i.e., they lead to interventionist causal models but not necessarily
to mechanistic causal models, see (15))—where understanding
such mechanisms can often highlight further possible targets for
effective intervention (16,17).More generally, the biopsychosocial
model has also been criticized clinically within psychiatry as too
vague to guide the systematic evaluation of (and intervention
upon) the relevant biological, psychological, and social factors that
a clinician should prioritize in a given individual case (18).

In the recent editorial mentioned previously, Lane (3) proposed
that if a mechanistic causal model of both brain-body interactions
and brain-behavior-environment interactions was constructed, and
combined with a theory linking brain processes to psychological
processes, this would be one primary way of bringing the biomedi-
cal and biopsychosocial perspectives closer together. By illustrating
how psychological and social variables are realized by and/or mecha-
nistically interact with biological variables, such amodelwould demon-
strate how psychosocial variables can be seen as necessary elements of
a fully articulated biomedical perspective (also see (19,20)).

In the present article, we draw on current theory and evidence
within cognitive science, cognitive and computational neurosci-
ence, and physiology to propose and articulate this kind of mech-
anistic model. Our hope is that this proposal will represent an
important new step toward integrating the biopsychosocial and
biomedical perspectives on health and disease and reduce the
vagueness of the biopsychosocial model. Important goals are to
outline plausible mechanisms that could underlie psychosocial

causes, to more precisely guide clinical thinking/practice, to facil-
itate progress toward the ability to identify individual cases in
which the biomedical model may be too simple (e.g., in which it
may miss relevant factors, such as treatment adherence, patient-
provider interactions, other relationship issues, treatment access,
end-of-life issues, etc.) and to aid in the design of effective clinical
interventions; in so doing, we aim to demonstrate mechanistic re-
lationships between psychosocial variables and medical outcomes
that will organically integrate them into biomedical models.

However, because the purview of the biopsychosocial model is
exceptionally broad, to provide a concrete presentation of our model,
we will first narrow our focus onto a particular example topic: the
relationship between social support and health outcomes.We have
selected this example topic for three reasons. First, social support
is a powerful predictor of health outcomes relative to other psycho-
social variables (21–25); therefore, it is plausibly one of the most
important examples within the purview of the biopsychosocial
model to articulate in concrete detail. Second, there is already a
large empirical/theoretical literature to draw on regarding this rela-
tionship (the variable of social support/isolation also has the ben-
efit of allowing for the use of animal models with strong face
validity for studying health outcomes, e.g., see (26)). Third, social
variables create the greatest challenge in explaining how psycho-
social factors seemingly traverse from extracorporeal reality to
bodily physiology and biochemistry.

Therefore, in what follows we will first review current models
(and supporting evidence) seeking to explain the relationship be-
tween social support and health. Next, we will illustrate how the
incorporation of recent embodied neurocomputational perspec-
tives can add to and clarify such models and how the integration
of this work can provide support for a more precisely articulated
multilevel mechanistic/causal model capable of explaining this
relationship in a domain-general manner. Finally, we will ex-
plore the implications of this proposal for understanding social
support and health and illustrate how—because of the
domain-general nature of our model—it can also be generalized
to account for a wide range of other phenomena that pertain to
the biopsychosocial perspective.

SOCIAL SUPPORTAND HEALTH
Empirical research on the connection between social support and
physical/mental health has made considerable progress in recent
decades (e.g., (27,28)). Relationships between social support and
many health-related variables are firmly established, and plausible
factors and pathways to explain these relationships have begun to
be identified. These include genetic, environmental, autonomic,
endocrine, immune, neural, affective, cognitive, behavioral, and
social factors—all plausibly overlapping and/or interacting over
time in highly complex ways (29). Understanding these complex
interactions remains a daunting challenge for multiple reasons, in-
cluding the presently limited scientific understanding of each factor,
the equal or greater limitations in present scientific understanding of
their interactions, as well as the many theoretical/conceptual diffi-
culties that arise when attempting to characterize interacting pro-
cesses that involve different levels of description (e.g., processes
that can be described at neural/biological, psychological, and social
levels; for a thorough discussion of multilevel medical research, see
(30)). However, it is of potentially great importance to researchers,
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health professionals, and the public that these underlying mech-
anisms are understood—as such, information could potentially
be harnessed to promote better health outcomes in a wide range
of contexts.

In this section, we will provide a concise summary of major
themes in the study of social support and health. Subsequently,
we will outline a set of theoretical (embodied neurocomputational)
perspectives yet to be fully incorporated into social support research
and illustrate how, by incorporating these perspectives, a model of in-
teractions between brain, body, and external world can be constructed
that is both sufficiently general to extend to other biopsychosocial
phenomena and sufficiently powerful to explain current findings
on social support and health in a unified manner.

One initially important observation is that social isolation is as-
sociated with both shorter life span and greater vulnerability to a
range of somatic diseases (31,32). Furthermore, these associations
have most consistently been observed with respect to perceived (as
opposed to received) social support, suggesting the importance of
mediating psychological/behavioral variables (27). Specifically,
“perceived” social support can be thought of as one's general belief
that social support is present, whereas “received” social support in-
volves the receipt of particular supportive actions by others (i.e.,
which an individual might interpret in a number of ways). Thus,
if a person believes that they are generally supported by others, this
reliably predicts better health outcomes; on the other hand, an in-
dividual might interpret particular supportive acts as indicative of
a range of positive or negative evaluations of others (e.g., as a sign
of “care” versus “pity”), potentially explaining why the relation-
ship between health and “received” social support appears less ro-
bust. This idea is also consistent with multiple reviews (27,28),
which suggest that perceived social support plausibly influences
health via associations with several personality/individual differ-
ence variables (i.e., secure attachment, high optimism, low neuroti-
cism, low hostility, low loneliness) and several cognitive/behavioral
variables (e.g., more adaptive interpretations of social transactions,
greater appraisals of control and self-efficacy, more flexible/
proactive coping strategies, healthier life-style choices) that would
plausibly influence the way an individual interprets, and what they
learn from, the receipt of supportive/unsupportive actions of others
(i.e., in addition to other influences, such as those of cultural
norms). Individuals' behaviors in response to the actions of others
could also subsequently influence the availability of social sup-
port, where less objectively available support can also have ad-
verse influences on health (33).

It is also widely recognized that these mediating psychological/
behavioral variables have an underlying biological basis in the brain
and body (including significant genetic contributions, e.g., for work
supporting the heritability of personality variables, see (34,35)). To
date, empirical work on these biological underpinnings has focused
on characterizing a set of mechanistic, causal, and potentially ex-
planatory links between (a) the neural basis of perception of social
support (or the lack thereof ), (b) the causal influence of these sys-
tems on the subsequent initiation of adjustments to the endocrine
and autonomic nervous system, and (c) the causal influence of these
endocrine/autonomic systems on peripheral organ systems and in-
flammatory processes known to contribute to a wide range of dis-
ease states (and to mortality generally (32,36,37)).

Such work has first argued that social support is important for
survival in humans and other social species (e.g., historically,

social rejection may have promoted exposure to predators, hostile
conspecifics, and foreign pathogens). Based on this premise, it has
then been predicted, and supporting evidence has subsequently
been found for, the idea that the brain interprets social exclusion/
rejection as a survival threat—engaging the same set of threat-
sensitive regions (i.e., amygdala, anterior insula, dorsal anterior cin-
gulate, and periacqueductal gray) activated by pain and other types
of perceived dangers (29,38–41). Along these same lines, this work
has also demonstrated that perceived social connection/caregiving
is rewarding—engaging a set of reward-sensitive brain regions
(ventromedial prefrontal cortex, posterior cingulate cortex, ventral
striatum, septal area—regions linked to “default mode” and “lim-
bic” networks that are also implicated in visceromotor control, see
(42)) and neuromodulatory responses (involving oxytocin, endoge-
nous opioids) that inhibit the previously mentioned threat-sensitive
regions (43,44). There also seems to be both developmental and ge-
netic influences on the function of these brain systems (45,46).

This body of work has next demonstrated that the activation of
threat-sensitive brain regions (whether by physical or social
threats) promotes increases in sympathetic nervous system (SNS)
activation, which in turn upregulates gene expression for multiple
proinflammatory cytokines (e.g., IL6 and IL1B) in circulating im-
mune cells (29,44,47–55). Activation of threat-sensitive regions
also leads to activation of the hypothalamic-pituitary-adrenal axis,
which releases glucocorticoids that suppress the expression
of these same genes (56–58); however, when threat detection be-
comes chronic, it appears that the glucocorticoid response becomes
desensitized/ineffective, whereas the SNS response becomes
sensitized—leading to an overall increase in basal levels of inflam-
matory gene expression (59–61) (certain gene variants also appear
to moderate the afferent influence of these upregulated inflamma-
tory processes, e.g., see (62)). In contrast, activation of reward-
sensitive regions (whether by perceived social support or other cues)
has been shown to inhibit threat-sensitive regions, to reduce the pre-
viously described SNS/endocrine responses, to increase parasympa-
thetic tone, and to decrease inflammatory activity and other related
influences on peripheral organ systems (reviewed in (29)).2

In summary, current work suggests that a range of individual
differences in personality, cognition, and behavior (themselves
the joint product of innate/genetic factors and learning from earlier
experience) may promote different tendencies to (a) perceive
events as cases of social support or social rejection and (b) act in
ways that promote increases in social support or social rejection
(also see (63,64)). The perception of social rejection will activate
threat-sensitive regions, whereas the perception of social support
will activate reward-sensitive regions and inhibit threat-sensitive
regions. Greater chronic activation within threat-sensitive regions
will in turn promote autonomic/endocrine responses, which in turn
increase chronic levels of circulating proinflammatory cytokines
in the body. The resulting bodily state indexed by chronic SNS/
endocrine/immune activation may directly contribute to poorer
physical health outcomes, and via afferent feedback to the brain,
it may also promote behavior patterns (e.g., “sickness behaviors”)
that also lead to worse physical (and emotional) health.

2It should be highlighted, however, that experimental work in this area has
focused primarily on demonstrating acute, short-term effects of social sup-
port manipulations. Future empirical work will be necessary to better dem-
onstrate how these short-term effects relate to longer-term health outcomes.
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A MORE INTEGRATED MODEL: INCORPORATING
AN EMBODIED NEUROCOMPUTATIONAL
PERSPECTIVE
Although previous theoretical/empirical work in this area has clearly
begun to incorporate more interdisciplinary perspectives, the field
would currently benefit from further integration of conceptual re-
sources and empirical findings in other research areas. For exam-
ple, the utility of computational perspectives on the brain has
recently been recognized as of potentially great importance to psy-
chiatry (65) and to psychosomatic medicine (66); however, limited
work to date has attempted to draw on this perspective to under-
stand the link between social support and health or for clarifying
the biopsychosocial model more generally (for a recent computa-
tional model of interactions between social support and mood, see
(67)). Relatedly, there is a large body of work in cognitive science
on embodied cognition, which provides important insights regard-
ing the nature of health-relevant brain-body interactions; however,
to our knowledge, the conceptual resources provided by such
work have yet to be fully applied to the biopsychosocial model
as a whole. One notable exception is recent work on social base-
line theory (41,68), which has begun to highlight the potential util-
ity of a broadly embodied, Bayesian perspective in social support
research. Some aspects of the framework we illustrate hereinafter
can therefore be seen as adding concrete detail to, and a broader
application of, these recent suggestions.

We will now outline how these (and related) bodies of work, by
building on previous attempts to create an embodied computa-
tional theory of brain function (e.g., (69,70)), may help provide a
broader andmore complete perspective on the links between social
support and health. We will first review relevant work supporting
these perspectives generally. Then, we will illustrate how they can
be added to, and integrated with, the work on social support and
health described previously. In later sections, we will then demon-
strate how the resulting integrated model can be generalized to
other biopsychosocial phenomena.

Embodied Cognition
Within cognitive science, a large body of work has illustrated the
strong relationship between cognition and the body and specifically
how perception, cognition, and behavior seem to be much more
overlapping and intertwined than previously assumed (69,71,72).
As a whole, it is beyond the scope of this article to thoroughly re-
view this literature. Instead, we will focus on one set of findings re-
garding the perception of “affordances” (or opportunities for action)
that shed light on how representations of current and predicted fu-
ture states of the body implicitly influence perception and how this
in turn may function to optimize decision-making and behavior.

Affordances refer to the properties of objects that indicate how
they can and should be used, acted upon, or interacted with in a
given situation. The work on perception of affordances, broadly
construed, suggests that humans do not actually perceive mind-
independent properties of the world, such as steepness, height,
weight, and distance. Instead, we perceive opportunities for action
(i.e., affordances) that differ depending on the current state of the
body and available resources/demands in the current context. For
example, people with longer arms (and people given reach-
extending tools) reliably perceive target objects as closer, suggest-
ing their conscious perception actually tracks how “reachable” the

object is (73–75). As another example, recent work on the size-
weight illusion (i.e., where one object is incorrectly perceived to
be heavier than another because of its size) similarly suggests that
the property being perceived is better described, not as weight, but
as “throwability” (76). Furthermore, feeling fatigued, wearing a
heavy backpack, being in worse cardiovascular shape, and experienc-
ing chronic pain have each been associated with perception of longer
path distances (i.e., perception of “walkability”) (77–79); distance per-
ception has also been shown to interact with affective approach/
avoidance tendencies (80). Other examples abound: baseball
players with better batting averages perceive the ball to be larger
(81); golfers who are better at putting perceive the hole to be big-
ger (82); individuals with larger hands perceive graspable objects
to be smaller (83); and individuals feeling greater fear perceive
declining slopes to be steeper (84). Thus, in these contexts,
humans are better described as perceiving affordances such as how
throwable, graspable, walkable, and climbable something is, given
the state of the body and contextual task demands. This in itself pro-
vides currently underappreciated links between social/psychosomatic
medicine and everyday cognition.

Of direct relevance to the current topic of social support, one
study in this literature found that a hill was reliably perceived as
less steep when an individual was accompanied by a friend versus
alone (or if they simply imagined a supportive versus unsupportive
individual) and that this effect was moderated by relationship qual-
ity (85). This suggests that perceived social support alters neural
estimates of the physiological resources required to deal with chal-
lenge.When combined with other work illustrating that affordance
perception effects are mediated by internal motor simulations (73),
it is plausible to suggest the following account. First, to estimate
steepness, the brain simulates attempts at climbing the hill, including
a comparison of available physiological resources to those required
for success in these simulations. Second, the reason social support re-
duces the perceived steepness is that in the presence of social support,
the brain predicts/simulates the need for fewer physiological resources
to succeed. The brain does not predict the need to tax the body's phys-
iological resources as much when external sources of support are also
available. This therefore has direct implications for how perceived
social support can alter (a) conscious perception/appraisal of the
demands of a situation, (b) how the brain regulates the viscera,
and (c) decisions regarding how to act.

Computational Neuroscience
Recent work in computational neuroscience has provided biologi-
cally plausible process models that are capable of accounting for,
and providing insights regarding, the findings in the embodied cogni-
tion literature described previously. Specifically, these models natu-
rally account for the motor simulation process described previously,
as well as the processes that allow the brain to predict required phys-
iological resources within a particular interoceptive/exteroceptive
context (e.g., (86–88)). Such models also span various levels of or-
ganization of the nervous system, including both large-scale net-
work functions and smaller-scale cellular/synaptic interactions.

Thorough reviews of computational neuroscience and its grow-
ing role in understanding pathology within cognition-, emotion-,
and interoception-related functions have been recently provided
by others (e.g., (65,88–91)). Here, we will focus mainly on one
class of proposals in this area, here referred to as the predictive
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processing (PP) perspective (i.e., this perspective more specifi-
cally includes “predictive coding” for perception and “active infer-
ence” for visceral/skeletomotor control; described hereinafter).
These models have recently shown considerable promise in their
ability to account for interactions between exteroceptive percep-
tion, visceral regulation, skeletomotor action, and cognition (e.g.,
see (86–88,92–96)). The PP perspective suggests that the brain
implements a hierarchical generative model of what is happening,
both inside the body and out in the world, across various spatial
and temporal scales. At hierarchically low levels of processing
(i.e., primary sensory cortices), the brain is envisioned to continu-
ously use this model to generate predictions about sensory input
for each modality separately (e.g., vision, audition, interoception,
proprioception, etc.); this is referred to as “predictive coding”
(94). When these predictions are incorrect, prediction-error signals
are generated that drive changes to the internal model until
prediction-error is minimized—leading to updated internal repre-
sentations of the most likely causes of sensory input (i.e.,
perception/recognition). Higher levels in the brain (e.g., secondary
sensory cortices, association cortices) also attempt to predict how
the lower-level representations will change, and a similar
prediction-error minimization process also leads to revision of these
higher-level representations. Many levels of representation are
envisioned to exist within the brain and operate in this fashion—
each sending predictions to their own level and to the level below
(mediated by layer 5/6 cortical pyramidal neurons) and each send-
ing prediction-error signals to their own level and to the level
above (mediated by layer 2/3 cortical pyramidal neurons).

This message-passing scheme allows for a biologically plausi-
ble implementation of algorithms that approximate hierarchical
Bayesian inference. Specifically, the mathematics of the PP frame-
work approximate the hierarchical application of Bayes' theorem
to probability distributions (i.e., with means and variances) over
possible states of the body/world (i.e., at different levels of description)
within a generative model. When used in perception/recognition
processes, a generative model (m) can be thought of as combining
a probabilistic mapping from possible states of the body/world (x)
to patterns of sensory input (y), the so-called “likelihood function”
P(y | x, m), with an a priori probability distribution over possible
states of the body/world, the so-called “prior” P(x | m)—allowing
the model to generate (or “simulate”) sensory data (i.e., by sam-
pling a value from the prior distribution and inserting it into the
likelihood function). Then, given a pattern of sensory input, this
process can be inverted to infer the possible state of the world that
most likely caused that pattern of input (i.e., the “posterior” P(x | y,
m)) using Bayes' theorem:

P x y;mj Þ ¼ P x mj Þ � P y x;mj Þð Þ=P y mj Þ:ðððð

The most probable state of the body/world under the posterior
at a given level of description then corresponds to what is
perceived/recognized. This process can then be iterated hierarchi-
cally, where estimates at higher levels of a generative model can be
used to inform/constrain estimates at lower levels (e.g., inferring
the probability of the visual perceptual property “white” at a lower
level, given the probability of the conceptualized object “baseball”
estimated at a higher level). Thus, the PP framework addresses
with mathematical precision how the mind/brain interprets current
sensory input based on prior knowledge and provides a mechanism

for updating those preexisting beliefs, given that it is impossible to
know for sure what is happening in the external world (including
what is happening in the body; i.e., because sensory input is
noisy/ambiguous, and always consistent with multiple interpreta-
tions). For a primer on the detailed mathematics, and its proposed
algorithmic/physiological implementation using prediction and
prediction-error signals, see (97).

Importantly, because high-level representations are multimodal,
in that they attempt to predict the way lower-level representations in
different sensory modalities will change together (and over time),
this allows the brain to learn about the cross-modal relationships
between interoception and exteroception. Thus, if minimization
of a visually induced prediction-error signal led to changes in
high-level representations, this could also activate a change in
high-level predictions about interoception (i.e., visually perceiving
something could lead to changes in the way the body is perceived
as well). In symmetric fashion, changes in the body (conveyed by
interoceptive prediction errors) could also influence high-level vi-
sual predictions (i.e., visual perception could be influenced by
one's current visceral state). Thus, this aspect of the PP perspective
is capable of capturing the empirical phenomena described previ-
ously, in which exteroceptive perceptions of social support can in-
fluence interoceptive predictions, and visceral states can in turn
influence exteroceptive perception. Consistent with this perspec-
tive, some of the threat-sensitive cortical regions described previ-
ously (e.g., anterior insula and anterior cingulate; sometimes
referred to as central hubs of the “salience network”) represent ex-
amples of high-level, multimodal regions that are believed to serve
the function of directing cognition/attention toward information
relevant to visceral regulation (42).

Beyond unimodal and multimodal perception/recognition, the
PP perspective has also been extended to account for both motor
control and context-dependent neuromodulatory function. Briefly,
this extension of the PP perspective—termed “active inference”—
suggests that downward prediction signals to skeletomotor and
visceromotor reflex arcs (i.e., proprioceptive and interoceptive
predictions, respectively) can act to modify the set points for those
reflex arcs, which can subsequently lead the relevant effectors (i.e.,
muscles, organs, etc.) to change their activity to match the updated
set points (86,91,98). Essentially, this allows proprioceptive pre-
dictions to control skeletomotor actions and it allows interoceptive
predictions to regulate visceral activity. Furthermore, the balance
between perception and action in these models is under the dy-
namic control of neuromodulatory processes that regulate postsyn-
aptic gain (i.e., the “weight” of prediction and prediction-error
signals exchanged between brain regions) in a context-dependent
manner. For example, when these processes amplify the strength
of proprioceptive/interoceptive prediction signals, this will favor
bodily action. In contrast, when these processes amplify the strength
of low-level proprioceptive/interoceptive prediction-error signals, this
will favor internal model revision and changes in bodily perception.
This neuromodulatory process—termed “precision weighting”—is
theorized tomodulate postsynaptic gain based on estimates of signal
reliability (via a diverse set of mechanisms involving the norepineph-
rine, dopamine, and acetylcholine systems, and local GABAergic
inputs, among others—and their interactions with high-level re-
gions that represent current goals and other relevant aspects of
the current context), such that prediction-error signals expected
to have higher reliability (i.e., a higher signal-to-noise ratio,
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termed higher precision) in a given context are amplified, whereas
those with low reliability estimates are attenuated (95,96,99). This
is based on the following generic belief update rule (100):

Δμi / πi‐1=πið Þ � PEi‐1

Which can be read as “the change in the belief at the higher
level, Δμi, is proportional (∝) to the ratio of the estimated precision
at the lower level, πi-1, to the precision of the current belief at the
higher level, πi, multiplied by the prediction-error signal passed
upward from the lower level to the higher level, PE i-1.” Thus, pre-
diction errors lead to substantial revisions of an internal model
when they have high estimated precision (i.e., the postsynaptic
gain of the synapses communicating these prediction-error signals
will be upwardly modulated), but have very little effect when they
have low estimated precision (i.e., or when the higher level prior
has very high precision). To now reiterate the description in the
previous paragraph, in active inference, it is when high precision
is assigned to the previous predictions for interoceptive/proprioceptive
states that are passed downward that this has a strong top-down ef-
fect on the set points of skeletomotor and visceromotor reflex arcs,
leading to changes in body states/behaviors.

This extension of the PP perspective provides plausible mech-
anisms by which the brain can perceive something exteroceptively,
leading to updated multimodal predictions that also include
interoception and proprioception, and how these updated multi-
modal predictions can then be used to regulate the viscera and con-
trol behavior. For example, it provides a mechanism allowing
visual perception/recognition of social support to engage intero-
ceptive predictions pertaining to decreased metabolic demand;
these predictions (when given high-precision weightings) would
then induce a low-arousal visceral state. The samemechanism also
allows visual perception/recognition of social threat to engage in-
teroceptive predictions pertaining to increased metabolic demand;
these predictions (when given high-precision weightings) would
then induce a more high-arousal visceral state. As another example,
such mechanisms would also allow perception/recognition of social
support or social threat to engage different proprioceptive predictions
(i.e., emanating from the somatomotor network (42,101)), which
(when given high-precision weightings) would lead to different
behavioral responses (e.g., smiling versus frowning, approaching
versus avoiding, etc.).

To illustrate how this approach has the potential to offer quan-
titative modeling advances in biopsychosocial research (Figure 1),
we will now offer one simplified example (i.e., using single prob-
ability values instead of probability distributions with means and
precisions) to provide an intuition about the kind of probabilistic
mathematical precision that Bayesian computation can allow (i.e.,
which PP algorithms approximate). In this context, Bayes' theorem
can be formulated as follows:

P H Ej Þ ¼ P Hð Þ � P E Hj Þð Þ= P Hð Þ � P E Hj Þ þ P :Hð Þ � P E :Hj Þð Þððððð

This is read as “The probability of a hypothesis given some evi-
dence, P(H | E), is equal to the product of the prior probability of
that hypothesis, P(H), and the likelihood of getting that evidence
if the hypothesis were true, P(E | H), divided by the sum of (a) the
product of the prior probability of that hypothesis, P(H), and the
likelihood of getting that evidence if the hypothesis were true,
P(E | H) and (b) the product of the prior probability of that

hypothesis being false, P(¬H), and the likelihood of getting that
evidence if the hypothesis were false, P(E |¬H).”

To see how this applies to the type of hierarchical model shown
in Figure 1, consider a case inwhich an individual has just perceived
an ambiguous facial expression (a cryptic smile) from a co-worker
and is trying to infer whether the co-worker likes them (i.e., the
presence of SOCIAL SUPPORT) or dislikes them (i.e., the pres-
ence of SOCIALTHREAT). For the sake of this example, assume
that these are the only two relevant concepts that the individual has
acquired in their internal model (i.e., SOCIAL SUPPORT and SO-
CIAL THREAT). Next assume that the individual has two pieces
of information: (a) an abstract expectation that “people tend to
be unsupportive” and (b) the cryptic smile. Further assume that
(a) given the previously stated abstract expectation, P(SOCIAL
SUPPORT) = .3 and P(SOCIALTHREAT) = .7 within their internal
model (i.e., SOCIALTHREAT ismore likely when this higher-level
expectation is active) and that P(“cryptic smile” | SOCIAL SUP-
PORT) = .6 and P(“cryptic smile” | SOCIAL THREAT) = .4 (i.e.,
this ambiguous smile is slightly more consistent with SOCIAL
SUPPORT than with SOCIAL THREAT in their internal model,
but it could still indicate ridicule, etc.). Thus, if an individual's brain
were using an algorithm that approximates Bayes' theorem (i.e., as
in the PP framework), the inference would look as follows:

PðSOCIAL SUPPORT “crypticsmile”j Þ ¼ :3� :6ð Þ=ð :3� :6ð Þ þ :7� :4ð Þ
¼ :18=:46 ¼ :39

PðSOCIAL THREAT “crypticsmile”j Þ ¼ :7� :4ð Þ=ð :7� :4ð Þ þ :3� :6ð Þ
¼ :28=:46 ¼ :61

Thus, the individual's brain would infer that SOCIALTHREAT is
more likely—corresponding to the conscious belief that the other
individual is acting in an unfriendly manner. Similar computations
one level below could then be used to derive probabilistic predic-
tions about physiological/behavioral demands in a particular con-
text given the belief that the person dislikes them, and, if these
interoceptive/proprioceptive predictions were assigned high-precision
weightings, they would subsequently lead to a specific amount
of increased autonomic arousal and avoidance behavior. Impor-
tantly, if the individual instead entered the previously described
situation with a stronger (i.e., higher probability) abstract expecta-
tion that “people tend to be supportive” within their model, it
should be clear that the person would infer SOCIAL SUPPORT
and subsequently react with a very different physiological/behavioral
response (i.e., a low-arousal state and approach behavior in Figure 1).
It should be highlighted, however, that this example refers to the
perception of a single event and its link to physiological and be-
havioral responses. The link between such events and more stable,
long-term differences in perception, physiology, and behavior
would require further explanation, and as discussed further herein-
after, it may involve feedback loops that maintain prior probability
estimates favoring perception of threat versus support throughout
life more generally.

Example Neural Implementation
To provide an intuition about how this type ofmathematicalmodeling
can relate to neurobiology, consider the simplified example in Figure 2
(based on (97)). In Figure 2A, a network of four cortical pyramidal
neurons (blue triangles) connected by a set of axons/synapses

REVIEW

Psychosomatic Medicine, V 81 • 125-145 130 February/March 2019

Copyright © 2019 by the American Psychosomatic Society. Unauthorized reproduction of this article is prohibited.



(black lines) is displayed (those ending in arrows are excitatory;
those ending in filled circles are inhibitory). The higher-level neu-
ron marked “SS” estimates the level of social support (i.e., higher
levels of activity indicate higher levels of perceived social sup-
port). The lower-level neuron marked “SM” estimates the degree
of smiling in another person's facial expression (i.e., high levels
of activity indicate smiling and low levels indicate frowning). The
two neurons “PESS” and “PESM” indicate prediction errors for the
higher and lower levels, respectively. The SMneuron receives infor-
mation about sensory input from below, whereas the SS neuron re-
ceives prior prediction signals (PrSS) from higher levels (stored in

the strength of the descending axon's synapse). The precision/
reliability estimates of prediction errors at each level (πSS and
πSM) are stored in the synaptic strengths of the looping axons that
both leave from and return to each PE neuron (which, although not
explicitly modeled in this example, can also be further modulated
by higher-level expectations; dashed arrows). The relationship be-
tween level of smiling and level of social support is assumed to be
positive and linear (i.e., all else being equal, more smiling indi-
cates more social support). As thoroughly explained elsewhere
(97), under Gaussian assumptions, this type of network can ap-
proximate Bayesian inference.

FIGURE 1. Hierarchical basis of PP. At the highest level, the brain represents the probability of a set of abstract, long timescale
expectations about the world (in this case, whether or not people tend to be supportive); these act as Bayesian Prior Probability
estimates, which directly influence concept-level interpretations of multimodal sensory input. Based on these innate and/or learned
expectations, certain conceptual descriptions of perceived events are predicted to be more likely (in this case, the presence of SOCIAL
THREAT or SOCIAL SUPPORT). When activated, each of these concepts in turn predicts the co-occurrence of different percepts
across different sensory modalities. Here, SOCIAL THREAT predicts the co-occurrence of the exteroceptive percept of “Unfriendly
Facial Expression from Another Person,” the somatic/interoceptive percepts associated with a “high-arousal state,” as well as
proprioceptive percepts associated with skeletomotor actions involving “avoidance behavior.” SOCIAL SUPPORT instead predicts the
co-occurrence of the exteroceptive percept of “Friendly Facial Expression from Another Person,” the somatic/interoceptive percepts
associated with a “low-arousal state,” as well as proprioceptive percepts associated with skeletomotor actions involving “approach
behavior.” Active inference models suggest that interoceptive and proprioceptive predictions can, when assigned high precision, be
fulfilled by (and therefore act as) visceromotor and skeletomotor commands, respectively. In the context of an ambiguous facial
expression from another person (cryptic smile), this example indicates how abstract expectations about whether or not people tend to
be supportive will determine whether that facial expression is perceived as friendly or unfriendly, whether the individual will recognize
social support or social threat, and whether they will respond with a low- versus high-arousal state and with approach versus avoidance
behavior. Black arrows indicate the exchange of mutually reinforcing top-down predictions and bottom-up prediction-error signals
between hierarchical levels (e.g., SOCIAL THREAT predicts a “high-arousal state,” and prediction-error signals due to the unpredicted
perception of a high-arousal state would drive bottom-up increases in the probability of SOCIAL THREAT). Signals exchanged
between inconsistent representations at different levels are omitted for clarity (e.g., between SOCIAL SUPPORT and “Unfriendly Facial
Expression from Another Person”). Smaller gray arrows indicate lateral (within-layer) excitatory and inhibitory signaling, allowing, for
example, the activation of SOCIAL THREAT representations to inhibit the activation of SOCIAL SUPPORT representations, or allowing
“Unfriendly Facial Expression from Another Person” representations to directly prime predictions about avoidance behavior (e.g., if these
were consistently activated together in past experience).
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In Figures 2B to E, simulations of network activity are shown
when a neutral facial expression is observed (i.e., SM neuron ac-
tivity at a level of 5 on a scale from 0 to 10) given different prior
expectations and precision/reliability estimates. In Figures 2B
and C, the individual has a prior expectation of low versus high so-
cial support (1 and 9, respectively). As can be seen, after neural ac-
tivity levels stabilize, the estimated level of social support (i.e., level
of activity in the SS neuron) is lower than 5 in the first case and
higher than 5 in the second case, although the sensory input (rep-
resented by SM activity) is identical. In Figures 2D and E, the pre-
cision estimate for prior expectations indicates high versus low
reliability levels, respectively (i.e., where the prior for social sup-
port is 1 in each case). As can be seen, sensory input has a much
weaker influence on perceived social support when an individual

implicitly believes that their expected level of social support is
highly reliable (i.e., in Figure 2D). This example concretely illus-
trates how precise mathematical simulations of brain function
could be used to model individual differences in perceived social
support. Other elements of these types of models also allow prior
expectations and precision estimates to be modified through re-
peated experience over time (i.e., by altering synaptic strengths
(97)), but the mathematical details of these model elements are be-
yond the scope of the present manuscript.

It is worth noting that almost all of what occurs in such net-
works is implicit (e.g., priors, precision estimates, changing levels
of prediction error, etc.). Only the final estimate of a perceived
quantity (e.g., the stable level of activity in the SS neuron above)
is typically treated as a candidate for conscious experience. Thus,

FIGURE 2. Panel A provides a simplified example of a possible neural implementation of an internal model guiding perception of social
support (described more thoroughly in the text, section 3.3). Blue triangles indicate cortical pyramidal neurons, and black lines indicate
axons terminating in synaptic connections. Arrows indicate excitatory synaptic influences, and circles indicate inhibitory synaptic
influences (dashed arrows are not modeled but indicate additional context-specific modulatory influences that would be present in a
more complete model). Activity of the SS neuron estimates level of social support, and SM neuron activity represents level of smiling
in the perceived facial expression of another person (i.e., low activity indicates a clear frown and high activity indicates clear smile).
The two PE neurons reflect prediction errors associated with expected social support (higher level) and with SM activation (lower
level). The strength of the two looping axons' synapses (connecting each PE neuron to itself ) estimates the precision (reliability) of
prior expectations (πSS, higher level) and SM activity (πSM, lower level). Expected social support (PrSS) is conveyed through the
strength of the top-down inhibitory synapse on the higher-level PE neuron. Although not modeled here, PP models also include
quantitative synaptic learning mechanisms (i.e., update equations) allowing the strengths of the PrSS, πSS, and πSM synapses (i.e., prior
expectations and precision estimates) to be altered over time to better match patterns in experience. Panels B to E illustrate changes in
SS neuron activity (i.e., perceived social support; black lines) over time when presented with a neutral facial expression (i.e., moderate
SM activity, most consistent with a neutral amount of social support, all else being equal; blue lines) under different model parameter
values. These different parameter values reflect (a) prior expectations of low (B) versus high (C) levels of social support and (b) high
(D) versus low (E) reliability estimates for expectations of low social support. As can be seen, after SS neuron activity stabilizes, lower
levels of social support are perceived in B compared with C (reflecting the influence of prior predictions) and in D compared with E
(reflecting the influence of higher reliability estimates for prior predictions of low social support). For the detailed mathematics on
which this example is based, see (97). Color image is available only in online version (www.psychosomaticmedicine.org).
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a person could experience perceiving lower versus higher levels of
social support, but they need not be aware of why or how that per-
cept was generated. It is also worth noting that the previously men-
tioned simulation used a continuous representation of social support
(i.e., from low to high levels), whereas our earlier example used dis-
crete representations (i.e., the binary presence of either SOCIAL
SUPPORT or SOCIAL THREAT). The PP perspective offers ap-
proaches for modeling both continuous and discrete representa-
tions (and ways in which they can interact, see (102,103)),
because each approach can be useful in different contexts (e.g.,
low-level perception versus conceptualization and decision-
making). The biopsychosocial phenomena we describe here are
somewhat general in that there are ways they could be modeled
in both a discrete and continuous (or mixed) fashion.

Further Theoretical Advantages of Integrating
Predictive Processing and Embodied Cognition to
Understand the Social Support-Health Relationship
The explicitly hierarchical nature of the extended PP perspective
also offers two additional advantages. First, it offers a direct means
of implementing the motor simulation process that mediates
affordance perception in the presence/absence of social support.
Second, it offers a broader perspective on the contribution of dif-
ferent cortical and subcortical structures in mediating the link be-
tween perceived social support and visceral/behavioral responses
(and their associated health consequences). The first advantage, re-
garding motor simulation, has been previously discussed in the
context of cognitive control and decision-making (86,104). Essen-
tially, by temporarily attenuating the postsynaptic gain (precision)
of low-level predictions and prediction errors (i.e., preventing belief
updating and the efficacy of efferent influence on skeletal muscle),
higher-level brain regions can launch predictions about the selec-
tion of different actions in the current context, and allow the brain's
internal model to simulate the expected outcome across cortical
sensory and motor systems, without these predictions affecting ac-
tual behavior. The multimodal predictions engaged during this
process (which would take perceived social support into account)
would therefore be expected to influence exteroceptive perception
and would ultimately contribute to the final action chosen.

The second advantage, regarding understanding the distinct
contribution of cortical and subcortical structures, has been previ-
ously elaborated within recent extensions of the neurovisceral inte-
gration model (87) and recent explicitly mathematical Bayesian
models of homeostasis and allostasis (88). As reviewed in detail
there, specific subcortical structures (e.g., amygdala, periacqueductal
gray, several hypothalamic and brainstem nuclei) can be understood
as issuing the low-level interoceptive/proprioceptive predictions that
initiate, maintain, and regulate visceral/skeletomotor responses;
many of these nuclei also influence neuromodulatory functions
and can therefore further adjust information processing (i.e.,
precision-/reliability-based weighting via adjusting patterns of post-
synaptic gain) across cortex (e.g., altering biases in attention and
memory retrieval). As long as the low-level predictions of these sub-
cortical regions remain stable, a given pattern of bodily states and
cognitive modulation can therefore be maintained. We refer to these
bidirectional interactions between subcortical systems and the body
(and its upwardmodulatory influence on cortical information processing),
in which low-level predictions (regarding expected physiological/

behavioral demands in a situation) maintain particular bodily re-
sponse patterns (i.e., minimizing afferent prediction-error signals
from the body), as the “Subcortical Response Generation/Maintenance
Loop” (depicted by red arrows in Figure 3).

In the previously mentioned models (87,88), these low-level
predictions in turn depend on higher-level cortical predictions that
represent (a) current perceptions and (b) their inferred conceptual
meaning (e.g., perceiving an increase in heart palpitations, and in-
ferring that this means you are having a heart attack; or perceiving
those same heart palpitations, but inferring that they instead indi-
cate anxiety). In the context of new sensory input, ambiguities in
perception and conceptualization will further be resolved via the
influence of even higher-level (and goal-/context-specific) predictions/
expectations emanating from long-term memory systems (i.e.,
based on patterns in one's own past experience, and [possibly in-
nate] differences in personality and cognitive style). Thus, for ex-
ample, if a person has learned from past experience to expect that
cardiac conditions run in their family, then they may also be more
likely to perceive/recognize them as evidence of a heart attack.
Such perceptions/conceptualizations may predict the need for
greater physiological resources to deal with the demands of the sit-
uation, leading subcortical regions to then alter set points in ho-
meostatic reflexes and generate an even higher arousal visceral
state. These higher-level cortical processes and the prediction/
prediction-error signals they exchange with subcortical regions
are depicted by the blue arrows in Figure 3. We refer to the com-
bination of the red and blue arrows in Figure 3 as the “Intraper-
sonal Loop” (i.e., with the first loop nested inside of it), because
it allows the generation, maintenance, and regulation of bodily/
cognitive reactions in response to the activation of self-related per-
cepts, concepts, and memories.

Finally, the green arrows in Figure 3 depict one's own exter-
nally perceptible actions/behaviors, and the exteroceptively detect-
able consequences of those actions/behaviors. For example, you
may smile at someone, subsequently perceive that person smiling
back at you in response, and you may infer that this means that
they are supportive, or you might perceive a neutral facial expres-
sion in response and infer that they are hostile and unsupportive.
This “social loop” (with the other two loops nested inside of it) il-
lustrates how the externally perceptible aspects of one's own bodily
responses/behaviors can causally influence the state of the world
around us (including the state of other individuals) and how this
can affect the subsequent sensory inputs we receive. Just as de-
scribed previously, and drawing on the same multimodal cortical
systems described previously, subsequent ambiguities in percep-
tion and conceptualization will be resolved via the influence of
higher-level predictions/expectations. Thus, for example, if one
has learned from past experience to expect that a certain individual
will act in an unfriendly manner, then one may be more likely to
perceive a neutral/ambiguous expression from that individual as
negative and be more likely to conceptualize that individual as
unsupportive. Such perceptions/conceptualizations would likely
also predict the need for greater physiological resources to deal
with the demands of the situation, leading subcortical regions to gen-
erate a high-arousal visceral state, changes in one's own facial expres-
sion, and other changes in behavior (i.e., some of which the other
individualmay perceive and respond to, leading the loop to continue).

The role of a wide range of cortical regions/systems in these
second and third loops is supported by recent evidence of a
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large-scale brain system supporting emotion, interoception, and
visceral regulation (also termed allostasis (92,105)). This evidence
supports a model in which the dorsal mid/posterior insula com-
putes prediction-error signals between afferent visceral signals
(i.e., conveyed by the subcortical nuclei described previously)
and higher-level prediction signals emanating from the ventral an-
terior insula and anterior cingulate cortex (hubs of the salience net-
work) and from surrounding medial prefrontal cortex regions that

participate in multimodal conceptualization processes as part of
the default mode network ((105–108), e.g., for evidence
supporting the role of prediction signals in these regions in regulat-
ing stressor-evoked cardiovascular reactions in particular, see
(47,109)). Default mode network regions (e.g., medial prefrontal
cortex, posterior cingulate cortex, lateral temporal cortex, medial
temporal lobe) seem to play an important role in conceptualizing
interoceptive/exteroceptive perceptual representations in light of past

FIGURE 3. Three nested loop model. In this model, the red “Subcortical Response Generation/Maintenance Loop” is involved in
activating and maintaining particular somatic/visceral states (or patterns of evolving states) and in upwardly modulating higher-level
cortical processing (e.g., adjusting patterns of postsynaptic gain). This loop is nested within a larger “Intra-personal Loop” that also
contains the blue arrows. This loop allows the cortical perception and conceptualization of afferent bodily sensations (biased by higher-
level prior expectations; e.g., inferring that bodily sensations are due to SADNESS, given prior expectations in the context of a
funeral), and it allows these cortical representations to drive changes in subcortical activity and to the responses they generate/maintain.
This loop is in turn nested within a larger “social loop” that also contains the green arrows. This loop allows body state changes (e.g.,
facial expressions, overt behaviors) to be perceived by others and to influence the external environment more generally. The subsequent
consequences (e.g., the reactions of others, other changes in the environment) are subsequently perceived and conceptualized in light of
prior expectations. This can similarly alter subcortical responses and subsequent changes in body states (i.e., visceromotor and skeletomotor
actions/behaviors). In this model, a wide range of subcortical nuclei are expected to contribute to the processes described previously, including
the amygdala, basal ganglia, hypothalamus, thalamus, periacqueductal gray, a range of autonomic brainstem nuclei, and neuromodulatory
system nuclei (e.g., the noradrenergic locus coeruleus, serotonergic raphe nuclei, acetylcholinergic basal forebrain nuclei, and dopaminergic
midbrain nuclei). Relevant cortical regions could plausibly include unimodal sensory cortices (perception), default mode network cortices
(conceptualization), medial temporal lobe cortices (prior expectations from long-term memory), executive control network cortices (goal-
based prior expectations), salience network cortices (prior expectations based on current body state), and limbic network cortices
(visceromotor predictions influencing subcortical nuclei; for greater discussion of these networks/functions, see (42,101)). Although not an
explicit focus of the present model, genetic factors are expected to influence all of the processes discussed previously in complex ways
(e.g., by predisposing individuals toward developing different top-down expectations, biasing attention and decision-making, promoting
stronger/weaker visceral/inflammatory responses, etc.). Color image is available only in online version (www.psychosomaticmedicine.org).
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experience and subsequently initiating high-level influences over
the Subcortical Response Generation/Maintenance Loop. For ex-
ample, recent studies have found that inflammatory markers are
linked to functional connectivity in the default mode network
(110) and that altered top-down influences of medial prefrontal re-
gions on the amygdala are associated with real-world avoidance
behavior (111). Of particular relevance to the example illustrated
in Figure 1, another study has shown that during the perception
of social exclusion, altered medial prefrontal activation is associ-
ated with nonsuicidal self-injury (112), which is a type of avoid-
ance behavior (i.e., acting as a distraction from emotional
distress (113,114)). Thus, default mode network and salience net-
work regions may play an especially important role in the pro-
cesses assigned to cortical function in Figure 3, although other
regions/networks are also expected to make relevant contributions
(see the Figure 3 legend for a brief list of other candidate brain
regions/networks that may be associated with these processes).

IMPLICATIONS FOR UNDERSTANDING THE LINK
BETWEEN SOCIAL SUPPORTAND HEALTH
One primary benefit of the embodied neurocomputational perspec-
tive advocated here is that it organically integrates the different el-
ements in the chain of mechanistic causation from social support to
medical outcome. This could help advance biopsychosocial sci-
ence in some important ways, including (a) potentially generating
novel hypotheses regarding plausible mechanistic explanations for
previously observed correlational and causal relationships and (b)
potentially highlighting novel therapeutic intervention strategies
targeting, for example, the mechanistic “points of contact” be-
tween psychosocial and biological variables highlighted within
the model. As illustrated by the examples in the previous section,
the model depicted in Figure 3 (i.e., which is just a more general
way of depicting the structure shown in Figure 1 and its interac-
tions with the outside world) can incorporate all major aspects of
the previous work on social support and health in a fairly simple
set of three nested causal loops; however, it can also provide uni-
fying insights allowing previous findings to be understood in
terms of domain-general embodied computational processes. For
example, relevant individual differences in personality and cogni-
tive style identified in previous work are accounted for primarily
by the domain-general top-down influence of prior expectations
on perception and conceptualization (e.g., abstract expectations
reflecting optimism versus pessimism, one's level of self-efficacy,
the ability to control the environment, etc.), which are in turn under-
stood as reflecting the combined contribution of innate/genetic
factors and differences in previous experience. These differences
moderate the degree to which individuals will perceive/recognize
external events as indicative of the presence of social support ver-
sus social threat; high-level representations mediating expectation
and conceptualization are also multimodal, allowing changes in
body state to update these representations and subsequently influ-
ence external perception (and vice versa). The threat- and reward-
sensitive regions in previousmodels can also be identified as either
(a) cortical regions that mediate perception, conceptualization, and
high-level prior expectation (e.g., defaultmode network and executive
control network regions are likely especially important for conceptu-
alization and high-level expectation-related processes (42,87,115)) or

(b) subcortical regions that contribute to lower-level control of
skeletomotor/visceromotor responding.

Differences in the state of the autonomic/endocrine/immune
system, which are suggested to proximally lead to differences in
physical health outcomes in previous work, are accounted for by
chronic subcortical predictions regarding high physiological
demands—leading to increases in physiological arousal—which
may remain chronic because of the continued perception/recognition
of threat. In our model, this chronic perception of threat may in
turn be biased by bottom-up modulatory influences on cognition
(e.g., increased attention to the possibility of threat due to afferent
feedback indicating high levels of inflammation; i.e., acting as
probabilistic evidence that threat is more likely) as well as learned
top-down expectations (62,64). The role of differences in behavior
in promoting differences in social support and health is also
accounted for by the outermost loop of our model. For example,
this allows some patterns of behavior to garner additional per-
ceived social support, while allowing others to promote perceived
social rejection instead. This further allows for virtuous and vi-
cious cycles in which the perception of social support leads others
to provide more social support, whereas the perception of social
rejection leads others to act in a more rejecting manner in the fu-
ture. One important example of such phenomena is the consider-
able body of work showing that higher hostility/cynicism (i.e.,
not liking others and believing that others are selfish and only in-
terested in themselves) is associated with poor cardiac outcomes
(e.g., (116–118)). For example, this could be explained (at least
in part) by the fact that, all else being equal, the prior expectations
associated with hostility/cynicism would promote (a) perceptions
of selfishness in others, (b) interactions that would promote more
hostile responses from others (and subsequently greater social iso-
lation), and (c) chronically higher autonomic arousal within such
social interactions (reduced vagal tone, increased inflammation).

This model is also fairly general in its ability to account for re-
lated phenomena. As another example, consider the relationship
between low SES (especially during childhood) and worse health
outcomes (9,119,120). One hypothesis that could be generated
by our model pertains to the influence of learned expectations in
a low SES environment—such as expectations for unpredictabil-
ity, unhealthy living conditions, and unhealthy behaviors. In PP
models, learned expectations for social/environmental unpredict-
ability would promote lower reliability estimates for expected
long-term outcomes, potentially leading to greater perceptions of
challenge and associated metabolic demands, increased impulsivity,
reduced applications of cognitive control, reductions in expected
support, and a general tendency not to invest in the future (i.e., be-
cause distant future outcomes cannot be reliably predicted within
their models of the world; e.g., maintaining long-term relationships,
attaining a college education, etc.). Many of these predictions are al-
ready supported by studies of “fast life history strategy” in low SES
environments and by studies of children who have been raised in
other socially impoverished environments (e.g., (121,122)). Un-
healthy models of behavior and living conditions could also lead
to the acquisition of more reliable predictive models of those be-
haviors and conditions, reducing the tendency to engage in health-
ier behaviors or to seek out healthier conditions for which they
have impoverished models.

Low SES in childhood is also associated with higher levels of
inflammation in adulthood, and a recent study found that the
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presence of social support reduced inflammatory responses to
stressors to a greater degree in those who experienced a low SES
childhood (123). Such findings could be explained from the PP
perspective by highlighting that (a) low SES in childhood would
plausibly lead one to learn generic expectations of low social sup-
port and greater physiological demands in situations on average
and (b) the perception of social support would then induce larger
prediction errors (and larger subsequent revisions to visceral pre-
dictions) in individuals who grew up in low SES conditions. Our
model therefore highlights the important role of learned expecta-
tions during development in contributing to differences in physio-
logical wear and tear at baseline and in how this would interact
with new experience/learning later in life. This adds a great deal
of psychological complexity and sophistication to what might oth-
erwise be thought of as straightforwardly social variables (i.e.,
SES and social support).

IMPLICATIONS FOR THE
BIOPSYCHOSOCIAL MODEL

Domain-General Explanation and the Potential for
Quantitative Modeling
As illustrated in Figure 4 (which is a generalization of the PP hier-
archy depicted in Figure 1), because of the domain generality of
the processes in our model, it also has the ability to organically

integrate the different elements in the chain of mechanistic causa-
tion from essentially any relevant psychosocial variable to its influ-
ence on medical outcomes. Therefore, the mechanisms described
previously can also (as promised in the introduction) be generalized
to the larger biopsychosocial model as a whole. In Figure 3, the
depicted cortical processes can apply to the perception and concep-
tualization of any social, environmental, or bodily variable (e.g.,
those associated with personal health, self-esteem, perceived dis-
crimination, etc., (124)), as well as to any innate/learned prior expec-
tations about anything social/environmental, psychological, or
biological in one's own life. The depicted subcortical processes
can then trigger changes in one's peripheral physiological state
and behavior in response to any of the resulting cortical represen-
tations (based on whatever they happen to predict). The “social
loop” then further allows any resulting behavior (e.g., choosing
to follow a medical regimen or not, choosing to maintain contact
with family or not, etc.) to influence the subsequent social/
environmental and health-related events that one perceives.

As one concrete example of this type of generalizability, con-
sider the role of the clinician-patient relationship, where a more
positive relationship may promote better health outcomes (125).
There are many interrelated hypotheses about this relationship that
could be generated by our model. Given space constraints, how-
ever, we will focus on one for illustrative purposes: inference
about a clinician's trustworthiness and motivations. In the context

FIGURE 4. Generalization of the PP hierarchy depicted in Figure 1. This figure illustrates the domain generality of hierarchical processing,
allowing its application to a wide range of biopsychosocial phenomena. Bidirectional black arrows indicate the exchange of top-down
predictions and bottom-up prediction-error signals between hierarchical levels (i.e., maintaining consistency between the representations at
each level with high estimated probabilities; e.g., the expectation “things tend to work out” would increase the represented probability of
SAFETY but not SADNESS and vice versa). Unidirectional black arrows indicate causal interaction between bodily reactions and the
external world and between the external world and exteroceptive sensory organ states. The lateral (within-level) interactions depicted in
Figure 1 are not explicitly shown here; however, these would also play a role in maintaining consistency between representations (e.g.,
the concept of LONELINESS may activate the concept of SADNESS but inhibit the concept of CONTENTMENT).
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of a warm,mutually respectful relationship, a patient's prior expec-
tations would likely promote the inference that a clinician's treat-
ment recommendations are reliable and reflect genuine care and
concern; in contrast, in a poorer relationship (e.g., colder, less open
communication, etc.), these same treatment recommendations
might be perceived as less reliable/genuine (e.g., “they don't care
what I'm going through, they just want my money”). In the latter
case, the patient would likely arrive at more pessimistic expectations
about treatment outcomes, simulate the task of following treatment
recommendations as more challenging, and perceive their support
system for doing so as weak or nonexistent. According to our
model, this cascade of inferences would lead a patient to engage
greater physiological resources when contemplating following a
treatment regimen and less motivation to do so. Failure to do so
could in turn promote avoidance of follow-up appointments, per-
ceptions of disappointment and judgment, and self-perceptions
of failure. This could further worsen the perceived and actual rela-
tionship with the clinician, leading to a vicious cycle.

As a second example, consider the comorbidity between major
depression and poor cardiovascular health. In a previous article,
we reviewed a large body of evidence supporting the existence
of four nested positive feedback loops that can promote the main-
tenance of depressive symptoms (64), which is highly consistent
with the neurocomputational framework we defend here. Briefly,
this article highlighted ways in which the influence of priors
for depressive schemas (i.e., frommultimodal association cortices)
and associated precision estimates (e.g., altered neuromodulatory
influences) would promote biased inferences in perceptual systems
consistent with those schemas, leading to perceptions of social rejec-
tion, an increased tendency to simulate negative possible futures in
decision-making, reduced vagal tone and chronically elevated in-
flammation (proximally mediated by multiple subcortical nuclei),
reduced motivation and increased sickness behaviors, and reduced
sleep quality. We also reviewed evidence suggesting that these ef-
fects would in turn maintain depressive schemas and promote social
isolation and vulnerability to diseases—including cardiovascular
diseases—that are known to be promoted by autonomically medi-
ated increases in inflammation and by reduced physical activity
(also see (62)). This dovetails well with previous work demon-
strating the further role of altered autonomic balance (favoring
sympathetic influence) in promoting altered lipids, increased blood
glucose, and increased blood coagulation (126). It is also consistent
with biobehavioral frameworks that have been proposed to account
for multimorbidity more generally (127).

In addition to offering this kind of generalizability to many
biopsychosocial phenomena, it is also worth highlighting that, as
illustrated by the simplified quantitative examples previously pre-
sented (in relation to Figures 1 and 2), PP models have a precise
mathematical (i.e., Bayesian, information-theoretic) basis. This
mathematical basis could in principle allow for rigorous, quantitative,
testable predictions regarding howparticular types of new experiences
(new evidence) would lead to changes in the probabilistic beliefs re-
garding biopsychosocial variables that are held within an individual's
mind (e.g., how likely they believe that they are to feel better in the
long term if they start exercising). Thus, if quantitative estimates could
be gathered about (a) an individual's abstract expectations and (b)
the structure of the biopsychosocially relevant concepts that an in-
dividual has learned (i.e., what interoceptive/exteroceptive percepts
are represented as more/less consistent with them), then quantitative

modeling of biopsychosocial processes may become possible.
This could perhaps be done by designing psychosocial tasks in
which individual subject parameter estimates can be inferred from
trial-by-trial behavioral responses (for examples of such tasks used
outside the social domain, see (128,129)). In the context of social
support research, for example, tasks might be designed in which
participants are asked to predict how likely different individuals
are to engage in a future socially supportive act (or predict how
supportive they will be), after being exposed to images of those in-
dividuals and information about a few of their previous behaviors.
In principle, participants' predictions could be used to derive
subject-specific probability distributions, indicating quantitative
differences in their prior expectations about social support (e.g.,
similar to previous work on optimism (130)).

A further point worth considering is how the present model
builds off of constructs introduced by earlier models, which have
provided useful but less comprehensive explanations of psychoso-
cial phenomena. Two relevant examples are the qualitative con-
structs of “person schemas” and “internal working models” that
have been discussed, for example, within the literature on psycho-
dynamic theory and attachment theory (131–133). Both of these
constructs reflect the broad idea that, beginning in childhood, indi-
viduals develop mental structures that provide guiding expecta-
tions regarding the self, social relationships, and the typical
motivations and behaviors of others. It is then through the lens
of these mental structures that objective life events are perceived
and interpreted and to which they are responded. These constructs
could be seen as forerunners of the hierarchical probabilistic (gen-
erative) internal models described in this article. This updated con-
ception of an internal model can be seen as building on these
earlier constructs by (a) providing a quantitative mathematical for-
malism and (b) providing plausible neural process models for their
biological implementation. Figure 2, for example, provides a pos-
sible neural basis for a very simple internal model, consisting of
synaptic connection strengths that specify (a) expected levels of
social support and (b) a learned relationship between social sup-
port and a particular lower-level signal derived from sensory input
(i.e., a more intense smile indicates more social support). Realistic
neural implementations of plausibly human internal models would
be massively more complex (i.e., requiring a massively larger
number of neurons/synapses; e.g., the human brain contains
billions/trillions), but this illustrates how the framework offered
here can be seen as extending previous theoretical constructs and
advancing their scope and explanatory power to incorporate a
quantitative biological level of description.

A Shift in Perspective Within Biopsychosocial Research
Despite the previous considerations, one might wonder why the
more complicated model we have proposed is necessary for
biopsychosocial research. After all, some current experimental de-
signs already provide useful causal information, even without elu-
cidating underlying mechanisms (e.g., demonstrating that experimentally
increasing either social skills or emotion regulation skills leads to
better cardiovascular health outcomes, but without examining why
such causal relationships hold (12–14)). In addition, behavioral
scientists may not perceive major difficulties in explaining cur-
rently observed relationships between psychosocial and biological
variables at particular levels of description. For example, explanations
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such as “social support buffers stress,” “being socially integrated
adds meaning to life,” and “social support can help take the load
off of an individual by sharing the burden” all seem to be informa-
tive. Social baseline theory has also pointed out that humans arose
as interdependent creatures, helping explain why the absence of
this is stressful and painful (41,68). Given observed peripheral
physiological correlates in the autonomic, endocrine, and immune
systems associated with social variables, the idea that such “infor-
mation transfer systems” plausibly affect medical outcomes, and
the ease with which psychological variables can be incorporated
as mediating/moderating factors, it could be argued that a coherent
biopsychosocial model does not require further complexity.

The embodied neurocomputational perspective we have outlined
here suggests at least six, and likely many more, important shifts
away from the traditional perspective characterized previously.
First, although traditional approaches have tended to focus on so-
cial, psychological, and biological variables separately, our model
highlights the central role of mechanisms underlying causal inter-
actions between these variables and their mediation by the brain,
both of which have received much less attention. Furthermore,
to be accepted in biomedicine, biopsychosocial explanations must
conform to traditional standards, which require a more complete
account of pathogenic mechanisms. Because the traditional per-
spective has not emphasized mediating brain processes, it is un-
able at present to provide such an account. This is the groundwork
our model seeks to lay. That is, by providing a characterization
of biopsychosocial processes at a similar level of mechanistic
description/detail as other biomedical processes, this type of
model may allow practitioners from both perspectives to “share
the same language,” allowing discussion of biopsychosocial pro-
cesses to occur at whatever level of characterization happens to
be most pragmatic/informative in a given medical context (i.e., so-
cial, psychological, or biological levels).

A second, related point pertains to the need to uncover patho-
genic mechanisms. As highlighted previously, although causality
can be demonstrated through interventions (e.g., randomized con-
trolled trials), this need not provide any mechanistic information.
If underlying biological mechanisms explaining observations in
such clinical trials are to be delineated, one will first need a mech-
anistic model. The presently proposed model can therefore be seen
as an important step toward fulfilling that need. For example, one
trial in patients with coronary bypass surgery showed that psycho-
social skills training increased indices of interpersonal wellbeing
(i.e., greater satisfaction with life and social support, reduced anger
and depression) and that it also decreased heart rate and blood
pressure (i.e., both at rest and in response to an anger recall stressor
(12)). If a pre- and posttraining neuroimaging study were con-
ducted to investigate the mechanisms of these effects, our pro-
posed model would generate specific testable hypotheses. In
particular, our model would suggest that this psychosocial skills
training would (both directly and through behavioral change) alter
high-level prior predictions about the mental states of others, lead-
ing to altered default mode network activity. The influence of these
altered top-down predictions would also be reflected in functional
connectivity changes between default mode network structures
(medial prefrontal cortex in particular) and cortical/subcortical re-
gions that regulate autonomic influences on the cardiovascular sys-
tem (e.g., insula, amygdala, periacqueductal gray). If neuroimaging
could be performed during a psychosocial skills training task, our

model could also be used to generate specific tests of computational
dynamics, such as modeling neural responses linked to changing
predictions and prediction errors during learning. Findings of other
randomized controlled trials offer similar opportunities to uncover
biological mechanisms (e.g., examining other behavioral interven-
tions that reduce mortality in cardiovascular disease (13,14)), but
the present example illustrates how the results of such causal find-
ings could be better understood by drawing on the resources offered
by our proposed framework.

Third, although there are a large number of disparate findings
in the field of biopsychosocial research, less work to date has fo-
cused on providing a general, unifyingmodel that would make this
body of knowledge more useful/digestible to clinicians, other
health care providers, and other health care systems. Our model
can be seen as unifying in this way; furthermore, although some
neurocomputational aspects of our model are complex, the broader
elements and their interactions (Figure 3) are fairly simple and in-
tuitive for health care professionals. For example, a clinician could
use our model to reason as follows. “Are this patient's complaints
linked to problems in actual social circumstances or simply in per-
ceived social circumstances? If the latter, is this causing the patient
to act in ways that reduce the quality of actual social circumstances
as well? Is there an identifiable top-down expectation that is driv-
ing these perceived social problems? Given the physiological fa-
tigue resulting from this patient's illness, might their perception
of the demands of maintaining relationships be increased? How
might I intervene to motivate increased social engagement in this
context?” Such possible reasoning illustrates how the basic ele-
ments of our model, such as top-down expectation, perception,
conceptualization, physiological demands, and affordances, could
inform straightforward clinical reasoning with respect to how one
might (a) alter psychosocial variables to improve the course of an
illness and/or (b) treat an illness as a way of promoting improved
psychosocial functioning.

A fourth shift in thinking afforded by ourmodel strongly empha-
sizes why brain mechanisms are relevant to linking social and bio-
logical variables. One major reason is that variables such as social
support seem to largely influence biology and health based on the
way they influence perception and belief, which is mediated by
the neurocomputational mechanisms we have described. Thus, for
example, although two individuals may receive the same amount
of objective social support, it will be the individual who ends up
perceiving/believing that social support is available to them that
will obtain the greater health benefit. To understand why one indi-
vidual ends up with different perceptions/beliefs than another indi-
vidual, when both are in objectively similar social circumstances
(leading to different health outcomes), neurocomputational pro-
cess theories become highly relevant. They also have the added
benefit of being able to integrate not only mind/brain processes
but also regulation of peripheral physiology and the perception
of, and interaction with, the outside world.

Fifth, our model's incorporation of work on embodied cogni-
tion further highlights ways in which perception of social variables
is not based on a stable external reality; instead, such perceptions
are influenced by a person's current physiological state (e.g.,
social/occupational tasks may be perceived as more challenging
when in a state, such as that of chronic illness, in which repre-
sented metabolic resources are low). There are related concepts
in the literature; for example, people who are depressed have a
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negativity bias, they may think they are not supported when they are,
and perhaps they induce a lower level of support because they engage
in social isolation behaviors (for a recent review, see (64)). Affordance-
related aspects of perception in our model, and how those influence
behavior, provide a rational structure to account for the way such in-
dividuals inadvertently shape the level of social support they have.

Sixth, and most broadly, it is important to draw attention to the
fairly dramatic shift in thinking the PP and embodied cognition
perspectives jointly entail about both the way neurocognitive pro-
cesses operate and their functional separability from the body and
the environment. Perception has traditionally been understood pas-
sively, in that the brain has been seen as simply detecting and
responding to signals out in the world. In contrast, the updated per-
spective described here conceives of perception as active in multi-
ple senses. First, perceptual experience primarily represents the
brain's active attempt to build an internal model that successfully
predicts sensory input. As such, perception is much more strongly
shaped by expectation, past experience, and physiological/
environmental context than previously assumed. Perhaps most
surprisingly, exteroceptive perception and its influence on behav-
ior can be actively shaped by interoceptive predictions about the
physiological state of the body, such that objects/events will be
perceived differently (and responded to differently) given different
predicted metabolic demands. Second, behavior can be seen as an
active (or “enactive”) process of selecting the sensory input being
sampled in perception (e.g., shifting one's gaze to the left because
that is where reliable information is expected to be). Thus, behav-
ior also sculpts perception of the world, in that our behavior is
targeted toward producing the percepts that we expect/desire (e.g.,
eating food because we expect/desire the percept of fullness/
satiation). These considerations first highlight how looping inter-
actions with the body can be understood as central to cognition,
in that interactions between the brain and body are necessary to ac-
complish both perception and effective action selection. Further-
more, the brain-body system cannot be fully understood without
knowledge of its interactions with the external (sociocultural) en-
vironment in which it is embedded, because these interactions
shape the individual's further expectations, percepts, bodily regula-
tion processes, and behaviors (for further discussion, see (69,134)). In
contexts of both treatment and prevention, this shift in perspective
therefore strongly emphasizes the need for practitioners to con-
sider these highly individual, complex, bidirectional interactions
in shaping health outcomes.

These six unique aspects of the embodied neurocomputational
model combine to illustrate the importance of an individualistic
perspective. That is, it is the individual who perceives the level
of a social or task-related variable (whether or not this corresponds
to objective reality), and it is the individual's perception that leads
to physiological responses that influence health outcomes (e.g., for
a review of studies showing the stronger relationship between health
and perceived versus received social support, see (27)); the indi-
vidual's perceptions/expectations also lead to behaviors that either
directly (e.g., exercise) or indirectly influence health outcomes via
altering the objective social/environmental circumstances they are
in. From this perspective, it appears somewhat less relevant to
characterize objective social/environmental circumstances in iso-
lation and more relevant to characterize the individual's interpreta-
tion of those circumstances, as well as the way these interpretations
influence subsequent physiological responses, health-relevant

behaviors, and the perceived and actual changes in circumstances
those behaviors produce. This is also consistent with recent behav-
ioral genetics studies, which have demonstrated that despite shared
genes and overlapping environmental factors, nonshared aspects of
perception/experience can account for significant differences in
health-relevant outcomes (e.g., see (135–141)). This personalized
perspective focusing on the uniqueness of each person is the es-
sence of Engel's biopsychosocial model. It can also be easily ex-
tended to include the unique relationship that exists between any
given physician and any given patient, and the potentially benefi-
cial or deleterious effects of this interaction.

Broader Relevance to Research and Clinical Practice
Aside from the broad theoretical points highlighted previously, it is
important to consider the relevance of our model for future re-
search. Table 1 highlights current theoretical/empirical evidence
in support of our model. This table illustrates how nearly all of
the domain-general elements listed currently have considerable
support (i.e., with the exception of applications of the PP frame-
work to interoception and visceral regulation, which has only be-
gun to receive empirical support). What remains to be done is to
confirm that many of these domain-general elements are fully ap-
plicable to biopsychosocial processes in particular. Important ex-
perimental tests of this model will therefore primarily involve
adapting currently used paradigms to examine perception and be-
havior in biopsychosocially relevant contexts. This could be done,
for example, by testing applications of computational modeling to
currently used social threat/exclusion tasks (e.g., (39)) or by testing
for neural/behavioral/physiological evidence of probabilistic/Bayesian
information processing with respect to a variety of other relevant
variables (e.g., social perception, mentalization, intensity of auto-
nomic responses, etc.). If such evidence can be found, it would
confirm the validity (and potential usefulness) of our proposed ap-
plication of these domain-general processes to the biopsychosocial
context in particular. This would represent important progress in
biopsychosocial science.

It is also important to consider some particular clinical domains
and relevant interventions for which ourmodel may be useful. One
such domain is that of somatoform pain. First, current develop-
mental theories of somatoform pain have suggested that nonoptimal
early-life experiences and especially the lack of interpersonal affect
regulation between infant and caregiver may lead to aberrant devel-
opment of the threat-related neural circuits that activate in response
to both physical and emotional pain (183); this aberrant develop-
ment is suggested to lead to increased sensitivity to both kinds of
pain in adulthood and to related deficits in effective emotion reg-
ulation. However, the neural basis of this learning process has
not been thoroughly elaborated. The present model extends such
previous proposals by illustrating how repeated nonoptimal expe-
riences of this kindwould lead to repeated internal model revisions
at multiple hierarchical levels (driven by iterative prediction-error
minimization processes). The resulting internal model would come
to predict the absence of interpersonal resources for affect regulation
in general (i.e., a high-level prior expectation), which would jointly
amplify perceived situational/physiological demands and per-
ceived pain (e.g., via increased inflammation, etc., (184,185)); this
internal model would also have failed to learn adaptive ways to
conceptualize and respond to pain (i.e., due to the absence of
anyone modeling such responses during development).
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Another relevant clinical domain is that of the maintenance of
maladaptive social behavior. Current models of repetitive mal-
adaptive behaviors suggest that this phenomenon may be driven
by the production of vicious cycles in which such behaviors pro-
mote reactions from others (as well as the maintenance of other en-
vironmental conditions) that effectively reinforce those behaviors
and a perspective on the world that justifies them (186); such cycles
are often observed in clients by psychiatrists/psychotherapists. The
present model offers a way of understanding the embodied
neurocomputational basis for such vicious cycles and also sug-
gests the types of new experiences that may be necessary to disrupt
them. For example, consider a case in which an individual's past
experiences have been most consistent with the abstract expecta-
tion that “personal relationships normally end in pain and rejection.”
When such expectations bias current perception/conceptualization
of the behaviors of others, a large range of behaviors could be
interpreted in a manner consistent with that expectation (e.g.,
“she will only date me until she finds somebody better”). This
would likely lead to negative affective responses and defensive,
standoffish behavior that would appear prejudgmental, ungrateful,
and “assuming the worst,” which would deter further affectionate
or helpful behavior from others (i.e., acting as evidence confirm-
ing the previously mentioned abstract expectations). It is also easy
to imagine how different abstract expectations could lead to differ-
ent interpretations and to more affectionate/grateful responses,
which would instead promote further affectionate/supportive be-
havior from others in the future (for an explicit model of such cy-
clical processes in relation to gratitude specifically, see (63)). This
phenomenon could also help explain why, according to our model,
the stronger relationship found between health and “perceived” versus
“received” social support described previously would be expected
(i.e., because received support can be interpreted in many ways
and lead to response patterns that either promote or hinder health).

Aside from providing these clarifying insights about the way
previously observed clinical phenomena can be understood within

a unified, domain-general computational framework, the present
model also makes predictions about interventions that could be
tested in future research. For example, it predicts that for a given
individual, the relationship between received social support and
health should increase if they were provided with a psychothera-
peutic intervention designed to increase particular expectations
about the nature of others. For example, if an individual were re-
peatedly exposed to experiential evidence that people tend to be
more altruistic on average (i.e., relative to their previously learned
expectations), then future acts of support from others would be
more likely to be conceptualized as true support and therefore be
more likely to reduce inflammation, related estimates of metabolic
demand, and promote long-term health. Simpler interventionsmay
also be effective for altering certain maladaptive social expectations.
For example, a recent study demonstrated that (a) many people be-
lieve that others lead more rich/active social lives than they do and
(b) reducing the cognitive availability of memories of highly social
people (i.e., trendsetters/socialites that come easily to mind as an au-
tomatic standard of comparison) can reduce/eliminate this bias
(187). This illustrates how even short-term interventions that alter
biases in attention and memory retrieval could be successful at al-
tering activated prior expectations and the influence they have on
perception, action, and overall wellbeing.

Yet another prediction is that particular behavioral interventions
could be designed to disrupt vicious cycles that maintain low levels
of perceived support from others. For example, if individuals were
taught to respond to all instances of received support in an authentic,
grateful manner (i.e., independent of how they interpret the intentions
of such acts), then this would be expected to promote further support
from others over time. This could eventually flood the individual with
sufficient evidence that was inconsistent with their prior “unsupportive”
expectations and therefore change these expectations. This would then
increase the probability that future instances of received social
support would be interpreted as genuine and in turn promote phys-
iological responses beneficial to long-term health.

TABLE 1. Current Work Supporting Different Elements of the Proposed Neurocomputational Biopsychosocial Model

Model Elements Supportive Evidence

Predictive processing

Presence/importance of hierarchical neuroanatomical structure (86,87,94,142–145)

Consistent physiological/neural/behavioral activity – exteroception/skeletomotor behavior* (41,68,128,129,146–160)

Consistent physiological/neural activity – interoception/visceral regulation* (88,91,92,105,161–164)

Role of neural networks

Default mode network regions (including hippocampus) – abstract expectations and conceptualization* (42,106,165,166)

Salience network and subcortical regions – interoception, social threat detection, and visceral regulation (29,42,101)

Limbic network and subcortical regions – rewardingness of social connection and visceral regulation (29,42,101)

Executive control network regions – goal-related abstract expectations* (42,101,167)

Somatosensory, auditory, and visual cortices – unimodal perception (101,168)

Somatomotor network – cortical control of skeletomotor action (72,101)

Interactions between neural percept and concept representations* (169–174)

Hierarchical neurovisceral integration within/between networks (87,175–182)

Embodied cognition

General (69,73–76,81–84)

Biopsychosocially relevant variables (77–79,84,85)

* Although there is substantial support for these model elements in general, further work is required to thoroughly support their role in biopsychosocial processes in particular.
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CONCLUSIONS
In this article, we have articulated how incorporating an embodied
neurocomputational perspective can provide a novel framework
with the potential to advance biopsychosocial science. To be clear,
this framework is fully consistent with currently proposed
nonreductionist explanations within this field (e.g., “better patient-
clinician relationships promote recovery,” etc., see (188,189)), and
it does not seek to replace those (empirically supported) causal ex-
planations with others that appeal only to biology or to render them
epiphenomenal (i.e., one can talk informatively about causation and
explanation at multiple levels of description—the only requirement
being that descriptions at each level must be consistent with one
another; e.g., see (190)). Instead, the primary advancement offered
by our model is that it allows the multilevel connections and inter-
actions between social, psychological, neural, and bodily pro-
cesses to be understood in a more precise, detailed, integrative,
and coherent (and less eclectic) way (e.g., it offers a multilevel
mechanistic explanation for why better patient-clinician relation-
ships promote recovery). By further outlining an explicit hierarchi-
cal PP model for biopsychosocial phenomena in general, and
illustrating how its dynamics can lead to both beneficial and harmful
feedback loops with the external world, this also extends previous
proposals regarding the potential utility of a Bayesian perspective
in social support research (41,68). The perspective we have outlined
offers the following specific advancements:

1. It greatly increases the psychological complexity of social
phenomena.

2. It emphasizes that a purely social (outside the individual)
evaluation of social support is relatively lacking in utility
and remains mechanistically disconnected from biology.

3. It highlights that the relevant unit for understanding the bio-
behavioral mechanisms of health (including social support)
is the individual.

4. It highlights the active nature of perception, and illustrates
why an individual's cognition and behavior can only be fully
understood through consideration of brain-body interactions
and the social/environmental context within which they have
been embedded throughout their life.

5. It provides a new way to conceptualize and model the way
broad expectations regarding perceptions (some plausibly
learned during development), and their influence on social
behavior, can themselves bring about the actual ways that
one interacts with others, such that those expectations lead
to changes in the reality of the social circumstances one sub-
sequently experiences/perceives—potentially leading to both
virtuous and vicious perception-action cycles.

6. It demonstrates that biological, psychological, and social pro-
cesses are regulated through similar, interrelated and inte-
grated algorithmic processes within the individual's brain.

We have also illustrated how this perspective can advance un-
derstanding of the specific relationship between social support and
health in several ways. First, it can explain, in explicitly probabilis-
tic (and precise, mathematically modelable) terms, why bidirec-
tional relationships exist between interoceptive and exteroceptive
perception. Second, it provides a simple, general way of under-
standing individual differences in personality and cognitive style

as reflecting different innate/learned prior expectations about the
abstract probabilistic nature of individuals and other aspects of
the way the world works. These differences might in turn be influ-
enced by genetic differences in peripheral factors, such as inflam-
matory cytokine gene variants, that promote stable differences in
afferent modulatory influences on the brain (e.g., see (62)). In gen-
eral, although genetic factors have not been explicitly discussed as
part of our model, the likely influence of genetic factors on the pro-
cesses in our model can be captured (at least in part) by both pe-
ripheral influences on disease vulnerability and central influences
(e.g., on synaptic receptor subtypes) promoting individual differ-
ences in the influence of prior expectations (e.g., perhaps reflected
in temperament) and the way those expectations are updated in re-
sponse to experience (e.g., see (191)). This allows previously iden-
tified individual difference variables to have a clear influence on
the probability that particular acts of others will be interpreted as
socially supportive/accepting or unsupportive/threatening/rejecting
and in turn lead to different physiological and behavioral responses
(e.g., similar to the way individual differences in optimism have
been modeled as reflecting differences in prior expectations about
the probability of future reward (130)). Third, our model provides
a more precise way of understanding the hierarchical computa-
tional role of the “threat-sensitive” and “reward-sensitive” brain
regions identified in previous research, and highlights important
ways in which yet hierarchically higher brain regions (e.g., default
mode network and executive control network regions (42)) and cur-
rent widespread neuromodulatory influences (i.e., implementing
context-specific precision estimates) may act together to modulate
whether threat- or reward-related regionswill respondmore strongly
(and inhibit the other) in response to a particular perceived event.

Fourth, this model makes important predictions about the way
particular interventions might be designed to increase the amount
of social support (or other socially beneficial phenomena) that an
individual perceives and therefore indirectly promote better long-
term health. Such interventions should be designed and tested in
future research. Fifth, the domain generality of our model offers
the possibility that it could be extended to a wide range of other
phenomena, even outside of the biopsychosocial domain (i.e., to
any other domain where abstract expectations inform conceptual
and perceptual interpretations of internal/external events and where
such interpretations subsequently influence cognitive, skeletomotor,
and visceromotor responses). Thus, future work should therefore
also examine the potential insights that this general framework
could provide in other domains (e.g., research on interpersonal au-
tonomic physiology, research on the influence of emotion on pain,
etc. (192,193)). A detailed application of this framework to animal
models (e.g., regarding the role of maternal care on stress reactiv-
ity, see (194–198)) or specific adverse health behaviors (e.g.,
smoking, nonadherence to treatment) could also lead to similar
or even stronger conceptual models supporting the utility of a
Bayesian perspective. Finally, by illustrating links between neuro-
biological, computational, and psychological levels of description
of brain-body processes, and illustrating how particular mechanistic
causal processes plausibly facilitate specific reciprocal interactions
between social, neurobiological, physiological, and behavioral phe-
nomena, it is our hope that this can act as a clear demonstration of
how all the major elements of the biopsychosocial model are, in a
sense, already present within any complete biomedical model. In
principle, this could facilitate future work that more specifically
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guides clinicians in evaluating the degree to which biological, psy-
chological, and social variables are each relevant in individual
cases of illness; at present, it represents an important step in bridg-
ing the biopsychosocial and biomedical perspectives within clini-
cal practice.
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